EN 生科百年 内網 新内網

檢測到您當前使用浏覽器版本過于老舊,會導緻無法正常浏覽網站;請您使用電腦裡的其他浏覽器如:360、QQ、搜狗浏覽器的極速模式浏覽,或者使用谷歌、火狐等浏覽器。

下載Firefox

Auditory stream segregation and perceptual bistability

日期: 2018-12-07
北京大學定量生物學中心學術報告
題目:Auditory stream segregation and perceptual bistability
報告人:Professor John Rinzel
Center for Neural Science and Courant Institute of Mathematical Sciences, 
New York University
時間:12月14日(周五)13:00-14:00
地點:北京大學老化學樓東配樓101報告廳
主持人:陶樂天 研究員
摘要:
When experiencing an ambiguous sensory stimulus (e.g., the faces-vase image), subjects may report random alternations (time scale, seconds) between the possible interpretations. I will describe dynamical systems models for neuronal populations that compete for dominance through mutual inhibition, influenced by slow adaptation and noise. In highly idealized formulations network units are percept specific without direct representation of stimulus features.  Our behavioral experiments and modeling involve perception of ambiguous auditory stimuli.  The models incorporate feature specificity, tonotopically organized inputs and receptive fields, so that perceptual selectivity is emergent rather than built-in. Our model addresses the effects of selective attention, distractor and deviant sounds as well as the transient, so-called build-up, phase of sound source segregation as when entering a cocktail party.
John Rinzel教授簡介:
Education
B.S., Engineering, University of Florida, USA, 1967.
M.S., Mathematics, New York University’s Courant Institute, USA, 1968.
Ph.D., Mathematics, New York University’s Courant Institute, USA, 1973.
Professional/Academic Appointments
1968-70, 73-75, Mathematician, Divn Computer Research & Technology, NIH
1975-97 Chief & Research Math’n, Math Research Branch, NIDDK, NIH (Chief, '81-'97)
1997- Professor, Ctr for Neural Science & Courant Inst of Math’cl Sciences, New York Univ
Research Interests
His research is in computational neuroscience. He seek to understand the dynamics of neuronal systems, computations and behaviors. Current projects involve developing, analyzing and testing physiologically-based models for cellular integration and excitability, for auditory pathways of sound localization, for novelty detection and perception in multisource and ambiguous auditory scenes.
歡迎各位老師同學積極參加!