教育經曆:
1992,博士學位,微生物學系,愛爾蘭國立大學科克學院;
1984,學士學位,分子生物學專業,中國科學技術大學生物系;
工作經曆:
1999.7-至今,教授,beat365官方网站
1994.8-1999.6,副教授,beat365官方网站
1993,博士後,法國巴斯德研究所分子生物學部
1991-1992,Research Scientist,愛爾蘭Bio-Research Ireland Food Biotechnology Center
1986,訪問學者,德國比勒費爾德大學遺傳學系
1984-1985,實習研究員,中科院植物研究所固氮研究室社會服務工作:
2020-2024,國家重點研發計劃《合成生物學專項》“高效生物固氮回路的設計與系統優化”項目首席科學家
2010–2014,國家“973”重大基礎研究計劃生物固氮項目首席科學家
2004,第十四屆國際固氮大會主席
2002–2006,國家“973”重大基礎研究計劃生物固氮項目首席科學家
1995.10-2002.8,beat365官方网站副院長榮譽獎勵:
1999年國家傑出青年基金獲得者雜志任職:
2021-2014, Editorial Board Member with Current Opinion in Microbiology
2015-now, Editorial Board Member with Research in Microbiology 本實驗室主要興趣在于:
多年來,本實驗室的工作得到國際同行的認可。主要得到國家自然科學基金、國家科技部“863”、“973”項目基金、國家教育部基金資助、中法先進合作項目、Human Frontier Science Program等項目資助。主要工作包括:大腸杆菌及相關細菌中的基因調控網絡,尤其是碳代謝和氮代謝的調控偶聯;大腸杆菌及相關細菌中的基因調控機理;植物與微生物相互作用的分子生物學及功能基因組學研究;生物修複領域的研究(功能基因的分離);合成生物學及生物固氮;大腸杆菌定量生物學研究等。取得的主要成就有,發現原核基因表達調控中碳代謝及氮代謝之間的新的偶聯作用及其分子機理;發現DNA物理特性參與基因表達調控(該成果被國際知名學術網站Faculty of 1000 推薦);提出了激活蛋白-啟動子DNA-σ54-RNA聚合酶所形成的激活複合體的“三明治”結構模型(該成果被國際知名學術網站Faculty of 1000 推薦;使用合成生物學方法,我們使用T7 RNA聚合酶表達系統替代原有的σ54 RNA聚合酶對固氮基因簇的轉錄調控,繞開了原有固氮基因簇對轉錄調控系統中14種調控蛋白的依賴,為最終實現固氮基因向真核系統的轉移打下堅實的基礎;以肺炎克氏杆菌钼鐵固氮基因簇為底盤,成功的在大腸杆菌中構建了雜合的鐵鐵固氮酶體系,從而在不損失酶活的前提下,成功構建了雜合的隻含有10個結構基因的最小鐵鐵固氮酶體系(Yang et al. 2014,PNAS);證明來源于植物葉綠體和根部白體的電子傳遞鍊模塊能夠功能替代钼鐵及鐵鐵固氮酶系統中負責電子傳遞的原始模塊,提供底物還原所需的還原力的工作(Yang and Xie et al. 2017, PNAS。該論文被PNAS期刊推薦為“From the cover”封面文章);以及将極其複雜的需要十幾個甚至幾十個基因協同表達的钼鐵固氮酶系統簡化為五個編碼Polyprotein的巨型基因,并證明其高活性可支持大腸杆菌以氮氣作為唯一氮源生長的工作(Yang and Xie et al. 2018, PNAS。該論文被PNAS期刊推薦為“From the cover”封面文章),以上研究具有裡程碑式的意義,為最終實現固氮基因向真核系統的轉移打下堅實的基礎。
1. Bueno Batista, M. *, Brett, P., Appia-Ayme, C., Wang, Y.P. *, and Dixon, R. * (2021) Disrupting hierarchical control of nitrogen fixation enables carbon-dependent regulation of ammonia excretion in soil diazotrophs. PLoS Genet. 17(6):e1009617. doi: 10.1371/journal.pgen.1009617. Epub ahead of print. PMID: 34111137.
2.Xiang, N., Guo, C., Liu, J., Xu, H., Dixon, R.,* Yang, J.,* and Wang, Y.P.* (2020) Using synthetic biology to overcome barriers to stable expression of nitrogenase in eukaryotic organelles. Proc Natl Acad Sci USA. 117 (28): 16537-16545. doi:10.1073/pnas.2002307117
3.Jiang, F., Li, N., Wang, X., Cheng, J., Huang, Y., Yang, Y., Yang, J., Cai, B., Wang, Y.P., Jin, Q., and Gao, N. (2019) Cryo-EM structure and assembly of an extracellular contractile injection system. Cell 177, 1–14. doi: 10.1016/j.cell.2019.02.020.
4. Yang, J., Xie, X., Xiang, N., Dixon, R.,* and Wang, Y.P.* (2018) A polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology. Proc Natl Acad Sci U S A. 201804992; DOI: 10.1073/pnas.1804992115 [Highlighted by Stefan Burén, Gema Ló pez-Torrejón, and Luis M. Rubio (2018) Extreme bioengineering tomeet the nitrogen challenge Proc Natl Acad Sci U S A. doi/10.1073/pnas.1812247115]
5. Zhu, M., Dai, X., Guo, W., Ge, Z., Yang, M., Wang, H., and Wang, Y.P.* (2017) Manipulating bacterial cell cycle and cell size by titrating the expression of ribonucleotide reductase. mBio 8: e01741-17..
6. Yang, J., Xie, X. Yang, M. Dixon, R.* and Wang, Y.P.* (2017) Modular electron transport chains from eukaryotic organelles function to support nitrogenase activity. Proc Natl Acad Sci U S A. 114: 3009-3011. doi:10.1073/pnas.1620058114 [Highlighted by Vicente, E.J. and Dean, D.R. Keeping the nitrogen-fixation dream alive. Proc Natl Acad Sci U S A. 2017, 114 (12): 3009-3011, doi:10.1073/pnas.1701560114. And by Good A. (2018) Toward nitrogen-fixing plants. Science 359 (6378): 869-870, DOI: 10.1126/science.aas8737]. It has been compiled by the Royal Society of Biology (UK) as one of The Big Biology Breakthroughs of 2017. https://www.rsb.org.uk/about-us/mysociety/158-biologist/features/1881-big-biology-breakthroughs-2017
7. Dai, X., Zhu, M., Warren, M., Balakrishnan, R., Patsalo, V., Okano, H., Williamson, J.R., Fredrick, K., Wang, Y.P.* Hwa, T.* Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth. Nature Microbiology 2016, 2:16231. doi: 10.1038/nmicrobiol.2016.231
8. Zhu, M., Dai, X.,* and Wang, Y.P.* Real time determination of bacterial in vivo ribosome translation elongation speed based on LacZ complementation system. Nucleic Acids Res. 2016, 44 (20): e155. doi: 10.1093/nar/gkw698.
9. Tian, Z.X*., Yi, X.X., Cho, A., O`Gara, F., and Wang, Y.P.* CpxR activates MexAB-OprM efflux pump expression and enhances antibiotic resistance in both laboratory and clinical nalB-type isolates of Pseudomonas aeruginosa. PLOS Pathogens 2016, 12(10):e1005932. doi: 10.1371/journal.ppat.1005932.
10. Wang, J., Yan, D., Dixon, R.*, and Wang, Y.P.* Deciphering the principles of bacterial nitrogen dietary preferences: a strategy for nutrient containment. mBio 2016, 7(4):e00792-16. doi:10.1128/mBio.00792-16.
11. Yang, Y., Darbari, V.C, Zhang, N., Lu, D., Glyde, R., Wang, Y.P., Winkelman, J., Gourse, R.L., Murakami, K.S., Buck, M., Zhang, X.*, Structures of the RNA polymerase-σ54 reveal new and conserved regulatory strategies. Science, 2015, 349: 882-885 doi: 10.1126/science.aab1478
12. Basan, M., Zhu, M., Dai, X., Warren, M., Sévin, D., Wang, Y.P., Hwa, T.*, Inflating bacterial cells by increased protein synthesis. Molecular Systems Biology, 2015, 11: 836.
13. Liang, J.L., Yong Nie, Y., Wang, M., Xiong, G., Wang, Y.P., Maser, E., and Wu, X.L.*, Regulation of alkane degradation pathway by a TetR family repressor via an autoregulation positive feedback mechanism in a Gram-positive Dietzia bacterium. Mol. Microbiol., 2015, 99(2):338-59. doi: 10.1111/mmi.13232.
14. Tian, C., Jinren Ni, J.*, Chang, F., Liu, S., Xu, N., Sun, W., Xie, Y., Guo, Y., Ma, Y., Yang, Z., Dang, C., Huang, Y., Tian, Z., and Wang, Y.P, Bio-Source of di-n-butyl phthalate production by filamentous fungi. Scientific Report, 2015, 6:19791. doi: 10.1038
15. Liu, J., Wen, J., Yang, J., Yang, Y., Wei, X., Zhang, X.* and Wang, Y.P.*, Mutational analysis of dimeric linkers in peri- and cytoplasmic domains of histidine kinase DctB reveal their functional roles in signal transduction, Open Biology, 2014, 4: 140023.
16. Zhang, Y., Jiang, F., Tian, Z., Huo, Y., Sun, Y., and Wang, Y.P.*, CRP-Cyclic AMP Dependent Inhibition of the Xylene-Responsive σ54-Promoter Pu in Escherichia coli, PLoS ONE 2014, 9(1): e86727.
17. Dai, X., Zhu, M., and Wang, Y.P.*, Circular permutation of E. coli EPSP synthase: increased inhibitor resistance, improved catalytic activity, and an indicator for protein fragment complementation , Chem. Commun., 2014, 50 (15): 1830 – 1832.
18. Yang, J., Xie, X., Wang, X., Dixon, R.*, and Wang, Y.P.*, Reconstruction and minimal gene requirement for the alternative iron-only nitrogenase system in Escherichia coli., Proc Natl Acad Sci U S A., 2014, 111(35): E3718-E3725 [Highlighted by Vicente, E.J. and Dean, D.R. Keeping the nitrogen-fixation dream alive. Proc Natl Acad Sci U S A. 2017, 114 (12): 3009-3011, doi:10.1073/pnas.1701560114]
19. Zhou, Y., Kolb, A., Busby, S.J.W., and Wang, Y.P.*, Spacing requirements for bacterial Class I transcrIption activation are set by promoter elements., Nucleic Acids Res., 2014, 42(14): 9209-16.
20. You, C., Okano, H., Hui, S., Zhang, Z., Kim, M., Gunderson, C.W., Wang, Y.P., Lenz, P., Yan, D., and Hwa, T.*, Coordination of bacterial proteome with metabolism by cAMP signalling, Nature, 2013, 500: 301-306
21. Wang, X., Yang, J., Chen, L., Cheng, Q., Dixon, R.*, and Wang, Y.P.*, Using Synthetic Biology to Distinguish and Overcome Regulatory and Functional Barriers Related to Nitrogen Fixation, PLoS ONE , 2013 , 8(7): e68677
22. Aogain, M.M., Mooij, M.J., McCarthy, R.R., Eimear Plower, E., Wang, Y.P., Tian, Z.X., Dobson, A.D.W., Morrissey, J.P. Claire Adams, C., and O`Gara, F.*, The non-classical ArsR-family repressor PyeR (PA4354) modulates biofilm formation in Pseudomonas aeruginosa, Microbiology , 2012, 158: 2598-2609
23. Jiang F, Tian Z.X., Wang Y.P.*, Characterization of ligand response properties of the CRP protein from Pseudomonas putida, Chinese Science Bulletin, 2012, 57: 3878-3885
24. Yan, H.Q., Chang, S.H., Tian, Z.X., Zhang, L., Sun, Y.C. Li, Y., Wang, J., and Wang, Y.P.*, Novel AroA from Pseudomonas putida Confers Tobacco Plant with High Tolerance to Glyphosate, PLoS ONE, 2011, 6:e19732
25. Li, Y., Sun, Y.C., Yan, H.Q., and Wang, Y.P.*, Alternative split sites for fragment complementation, and glyphosate function as extra ligand and stabilizer for the AroA enzyme complexes, Chinese Science Bulletin, 2011, 55: 1-7
26. Mooij M.J., O`Connor H.F., Tian Z.X., Wang Y.-P., Adams C., and O`Gara F.*, Antibiotic selection leads to inadvertent selection of nfxC-type phenotypic mutants in Pseudomonas aeruginosa, Environmental Microbiology Reports, 2010, 2: 461–464
27. Nan, B., Liu, X., Zhou, Y. Liu, J. Zhang L., Wen, J. Zhang, X., Su, X.D.* and Wang, Y.P.*, From signal perception to signal transduction: ligand-induced dimeric switch of DctB sensory domain in solution , Mol. Microbiol, 2010, 75: 1484–1494
28. Tian, Z.-X., MacAogáin, M., O`Connor, H.F., Fargier, E., Mooij, M.J., Adams, C., Wang, Y.-P., and O`Gara, F.*, MexT modulates virulence determinants in Pseudomonas aeruginosa independent of the MexEF-OprN efflux pump, Microb Pathog, 2009, 47: 237-241
29. Tian, Z.X., Fargier, E., MacAogáin, M., Adams, C., Wang, Y.P., and O`Gara, F.*, TranscrIptome profiling defines a novel regulon modulated by the LysR-type transcrIptional regulator MexT in Pseudomonas aeruginosa, Nucleic Acids Res, 2009, 37: 7546-7559.
30. Xiao, Y., Wigneshweraraj, S., Weinzierl, R., Wang, Y.P.*, and Buck, M , Construction and functional analyses of a comprehensive σ54 site-directed mutant library using alanine-cysteine mutagenesis, Nucleic Acids Res, 2009, 37: 4482-4497
31. Huo, Y.X., Zhang, Y.T., Xiao, Y., Zhang, X., Buck, M., Kolb, A., Wang, Y.P.*, IHF-binding sites inhibit DNA loop formation and transcrIption initiation, Nucleic Acids Res, 2009, 37: 3878-3886. [Highlighted in Faculty of 1000 by Prof. Jim Maher]
32. Zhou, Y.F., Nan, B, Nan, J., Ma, Q., Panjikar, S., Liang, Y.H., Wang, Y.P.*, and Su, X.D.*, C4-Dicarboxylates Sensing Mechanism Revealed by the Crystal Structures of DctB Sensor Domain , J. Mol. Biol , 2008 , 383: 49–61
33. Yan, Y., Yang, J., Dou, Y., Chen, M., Ping, S., Peng, J., Lu, W., Zhang, W., Yao, Z., Li, H., Liu, W., He, S., Geng, L., Zhang, X., Yang, F., Yu, H., Zhan, Y., Li, D., Lin, Z., Wang, Y., Elmerich, C., Lin, M., and Jin, Q., Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501, Proc Natl Acad Sci U S A , 2008 , 105: 7564-7569
34. Mao, X.J., Huo, Y.X., Buck, M., Kolb, A., and Wang Y.P.*, Interplay between CRP-cAMP and PII-Ntr systems forms novel regulatory network between carbon metabolism and nitrogen assimilation in Escherichia coli, Nucleic Acids Res, 2007, 35: 1432-40
35. Huo, Y.X., Tian, Z.X., Rappas, M., Wen, J., Chen, Y.C., You, C.H., Zhang, X.D., Buck, M., Wang, Y.P.* and Kolb, A., Protein-Induced-DNA-Bending clarifies the architectural organization of the σ54-dependent glnAp2 promoter. Mol. Microbiol., 2006, 59: 168-180. [Highlighted by Faculty of 1000 by Prof. Steven Busby]
36. Tian ZX, Li QS, Buck M, Kolb A and Wang Y.P.*, The CRP-cAMP complex and downregulation of the glnAp2 promoter provides a novel regulatory linkage between carbon metabolism and nitrogen assimilation in Escherichia coli , Mol. Microbiol., 2001, 41: 911-924.
37. Wang YP, Kolb A, Buck M, Wen J, O’Gara F and Buc H.*, CRP interacts with promoter-bound σ54 RNA polymerase and blocks transcrIptional activation of the dctA promoter, The EMBO J., 1998, 17: 786-796.
38. Wang, Y.P., Giblin, L., Boesten, B., and O’Gara, F.*, The Escherichia coli cAMP receptor protein (CRP) represses the Rhizobium meliloti dctA promoter in a cAMP dependent fashion. Mol. Microbiol., 1993, 8: 253-259.
39. Wang, Y.P., Birkenhead, K., Dobson, A., Boesten, B., and O’Gara, F.*, Sequences downstream from the transcrIptional start site are essential for microaerobic, but not symbiotic, expression of the Rhizobium meliloti nifHDK promoter. Mol. Microbiol., 1991, 5: 157-162.